
Assessing the Veracity of Identity Assertions via
OSNs

Michael Sirivianos
Telefonica Research

msirivi@tid.es

Kyungbaek Kim
UC Irvine

kyungbak@uci.edu

Jian Wei Gan and Xiaowie Yang
Duke University

{jg76,xyz}@cs.duke.edu

Abstract—Anonymity is one of the main virtues of the Internet,
as it protects privacy and enables users to express opinions
more freely. However, anonymity hinders the assessment of the
veracity of assertions that online users make about their identity
attributes, such as age or profession. We propose FaceTrust, a
system that uses online social networks to provide lightweight
identity credentials while preserving a user’s anonymity. Face-
Trust employs a “game with a purpose” design to elicit the
opinions of the friends of a user about the user’s self-claimed
identity attributes, and uses attack-resistant trust inference to
assign veracity scores to identity attribute assertions. FaceTrust
provides credentials, which a user can use to corroborate his
assertions. We evaluate our proposal using a live Facebook
deployment and simulations on a crawled social graph. The
results show that our veracity scores strongly correlate with the
ground truth, even when a large fraction of the social network
users is dishonest and employs the Sybil attack.

I. Introduction
Rich social interactions take place on the Web, such as
blogging, shopping, chatting, working and playing. However,
unlike social interactions in the physical world, the Web
has largely hidden the identity of online users. “On the
Internet, nobody knows you are a dog,” says the famous Peter
Steiner cartoon. Anonymity has brought much benefit, such as
enabling users to express opinions freely. However, it makes
what and who to believe online challenging. Individuals that
hide their real identity attributes may defraud naive users.

Consider this real-life example. Alice is shopping for a
food scale and she finds a rave review “Worth DOUBLE the
Money” [4] from a user claiming “I was a chef for many
years.” Should she believe it, given that users have been caught
writing biased positive reviews for their own books [6] or their
company’s products [1]?

Real-world remedies to this problem typically forgo a user’s
anonymity. Moreover, verifying a user’s identity can be costly
and time consuming. For instance, Amazon provides a “Real
Name” badge to a user that wishes to sign his posts by his
real name [5]. It verifies a user’s name using his credit card
information.

This situation prompts the question: can a user cost-
effectively establish online identity assertion veracity without
sacrificing his anonymity? One approach is to use personal
digital certificates issued by a trusted Certificate Authority
(e.g., VeriSign [3]), and apply techniques such as idemix [9]
to make the certificates anonymous, unlinkable, and non-
transferable. However, this approach involves centralized man-
ual verification, and could be a financial [3] as well as a
usability burden on users [31].

We propose FaceTrust, a system that enables online per-
sonas to cheaply obtain credentials that indicate the veracity
of their identity statements without sacrificing their anonymity.
Our insight is that in many settings, online users or services do
not require strong authentication, and can benefit greatly from
likely-to-be-true identity information. For example, a user

may only need to know that a reviewer’s declared profession
appears truthful. Similarly, it may suffice for an adult site to
know that a user’s age information is likely to be true.

FaceTrust mines and enriches information embedded in on-
line social networks (OSNs) to provide lightweight and flexible
digital credentials of the identity assertions. We observe that
OSNs already allow users to express a limited form of trust
relationships using friend links. We propose to extend this
ability by allowing users to declare whether they consider
the identity assertions of their friends credible (§III-A). In
particular, a user who wishes to obtain a credential posts short
assertions about himself on his OSN profile in the form of a
poll, e.g., “Am I really over 18?” Since the identity information
on the OSN profile is inserted by the user, the OSN provider
can not directly infer its veracity. Thus, the OSN let the user
ask his friends to respond to this poll by tagging his assertion
as true or false. Based on the tagging information, the OSN
employs a veracity scoring mechanism (§III-C2) to estimate
a score that reflects how credible an assertion is. We call
this score assertion veracity (§III-B). The scoring mechanism
also employs transitive trust inference [15], which needs to be
attack-resistant because users may post false assertions, tag
incorrectly or lie, and create Sybil accounts [13], [7].

The intuition behind our trust inference scheme is that
benign (honest) users tend to tag correctly and similarly. We
compare a user’s tags with those from his friends on the set
of assertions they both tag, and use the similarity between the
tags as pairwise trust values on the social graph edges. We then
compute a Sybil-resistant tagger trustworthiness score for each
user, using our proposed max-flow-based scoring mechanism
that is more scalable than existing approaches. Our scheme
seeds trust at pre-selected known honest users and propagates
it along the similarity-annotated edges, resulting in dishonest
users that tag falsely to have substantially lower trust than
honest users. Finally, we derive an assertion’s veracity by com-
bining its tags weighted by their tagger’s trustworthiness. After
deriving an assertion’s veracity, the OSN issues a credential in
the form of {assertion, veracity, content, context}
(§III-E). Verifiers (online services or human users) can use
this OSN-issued credential to regulate their interactions with
the user that posted the assertion. For usability, our context-
specific credential scheme allows a user to certify his online
assertions with a web interface without involving user-side
cryptography (§III-E).

To evaluate FaceTrust we have built and deployed a Face-
book application, which has amassed over 1000 users. We
have also performed simulations on a 200K-user sample of a
crawled social graph (§IV). We show that FaceTrust assigns
high veracity to true assertions and low veracity to false ones,
even when a large fraction of the network is dishonest and
employs the Sybil attack.

The rest of the paper is organized as follows: §II describe the
overview of FaceTrust with an example and discuss FaceTrust

Fig. 1: FaceTrust overview and an age verification example.

ś assumptions and goals. §III provides the design of FaceTrust
in detail. §IV presents an evaluation of Bazzar. §V provides
related works and §VI concludes.

II. Overview
FaceTrust involves the following three roles (Figure 1): a) the
OSN provider that maintains the social network and its users’
profiles, and performs trust computations; b) online users that
maintain accounts with the OSN and wish to present OSN-
issued credentials; and c) credential verifying online services
or users.

A. An Example
We first use an age-verification example to shed light on how
FaceTrust roles interact. As shown in Figure 1, user u attempts
to access an age-restricted movie at the Netflix website. At the
same time, u does not wish to reveal his real identity to Netflix.

With FaceTrust, Netflix can demand an OSN-issued age
credential from the user to allow access to its content. To
obtain this credential, the user u must have posted an age
assertion on his OSN profile, and requested his friends to
tag the veracity of his age assertion before he attempts to
access the age-restricted content. In this example, user u has
asserted that his age is 21, and three of his friends, users x,
y, and z, have tagged the assertion with boolean values true,
true, and false respectively. Since not all users are equally
trustworthy, the OSN provider has computed a trustworthiness
score (w) for each tagger x, y, and z by analyzing the social
graph and their tagging history as we describe in §III-C. The
OSN provider computes an overall veracity score for user
u’s age assertion (0.8 in this example) by aggregating u’s
friends’ tagged values weighted by their trustworthiness scores
(§III-B). Subsequently, the OSN issues an age credential with
a veracity score that certifies that the user belongs to the
restricted age group.

In addition to age verification, we envision that FaceTrust
credentials will benefit Internet users and online services in
many other ways. More examples include but are not limited:
a) assessing the authority or relevance of online reviews or
wikipedia articles with profession credentials; and b) verifying
participant eligibility in online surveys or citizen journalism
sites [2] with credentials for age, location or other identity
attributes.

B. Assumptions
In designing FaceTrust, we make the following assumptions:

Users carefully vet FaceTrust friend requests: We rely
on the assumption that establishing friend connections in the
FaceTrust social network is a resource-intensive task. Users
can use common-secret-based techniques to verify that a OSN
friend request originates from a real acquaintance and not an
imposter [8]. We also assume that a user selects as OSN friends
users that will not try to harm him by tagging his honest
assertions as false.
Trusted credential issuing authority: We assume that the
OSN provider reliably issues credentials based on the input
of its users. We also assume that the OSN provider does not
reveal a user’s tags to others. Furthermore, users may wish
to remain anonymous and untraceable by the verifiers. We
assume that the OSN provider protects the privacy of its users
by not revealing their identity and the list of online services
or users that verify its users’ credentials.
Trustworthy users tag mostly correctly, as well as post
true identity assertions: When trustworthy users (honest)
tag a same identity assertion their tags mostly match, since
an assertion in FaceTrust is about ground truth (e.g. age,
profession, sex and etc.) rather than personal taste. We validate
this assumption to some extent in §IV-B. We treat users that
consistently tag mistakenly not due to malicious intent, but
due to lack of knowledge, as dishonest (§II-C).

C. Threat Model
FaceTrust’s design copes with the following threats by mali-
cious users aiming to subvert the system:
Dishonest assertion posters and taggers: We consider dis-
honest users that are primarily interested in posting dishonest
assertions to misrepresent their identities. These dishonest
users can collude with other dishonest users that tag their false
assertions as true.
Sybil Taggers: Dishonest users can launch the Sybil at-
tack [13] by creating many fake accounts under their control.
A dishonest user that creates Sybils can employ them to tag
the false assertions of the creator’s colluders as true.
Sybil Assertion Posters: Dishonest users can create Sybils
who are connected to them and post false assertions. These
assertions are tagged by their creators and their colluders
as true. This attack creates users that are not friends with
honest users, thus their assertions are never tagged false by
them. Consequently, it is easier for those Sybils to make their
assertions appear credible.
Camouflage attack: This threat model resembles what Kam-
var et al. [18] refer to as “malicious nodes with camouflage.”
One manifestation of this attack is the tagger camouflage
attack. Dishonest users attempt to build up trust with honest
users by always tagging similarly to the veracity that is
currently displayed for the assertion. After they earn enough
tagger trustworthiness, they tag dishonestly only for specific
questions. Another manifestation of the camouflage attack is
the assertion poster camouflage attack. A dishonest user posts
several honest assertions. Both his honest and dishonest friends
tag those assertions as true. As a result, if his dishonest and
honest friends are also friends with each other, his dishonest
friends build up trust with his honest friends. Consequently
the dishonest friends’ tagger trustworthiness increases.

D. Goals
FaceTrust’s design is driven by the following goals:
Attack-resistant: It should be difficult for false assertions
to appear trustworthy by having high veracity. Although our
design is attack-mitigating, it cannot ensure the correctness

of the veracity scores in the presence of devoted adversaries.
Thus, it is not meant for guarding critical resources, and the
veracity scoring is relaxed to be within the range [0,1] rather
than a binary true or false value. That is, FaceTrust provide
relaxed credentials rather than the truthfulness of a statement.
Lightweight: We aim to provide credible identity informa-
tion for online personas without centralized manual identity
verification.
Flexible: Users should be able to obtain credentials on a
variety of attributes, e.g., age, profession etc. Users should
also be able to conveniently obtain new credentials when their
attributes change.
Practical: The system should be easy to use. It should not
require users to deal with cryptographic primitives, and shared
secrets. It should require minimal upgrades of client software.
Secure: The credentials should satisfy authentication, i.e.,
the verifier should be assured that a credential is issued by
a trusted authority. They should satisfy integrity, i.e., the
assertion, veracity and context fields should be inalterable once
the credential is issued. This guarantees that a user cannot
forge the veracity score of his assertions and that a user cannot
use somebody else’s assertions to verify his identity attributes.
Finally, the credentials should preserve anonymity.

III. Design
A. Social Tagging
FaceTrust uses social tagging to obtain credible identity in-
formation of online users. By social tagging, we refer to OSN
users posting assertions about their attributes and their friends
tagging them as true or false. Our approach is similar to
the PGP Web of Trust [35], in that we allow only friends of a
user to tag (certify) the user’s assertion. Our rationale is two-
fold. First, most of the assertions posted by a user can only be
reliably evaluated by people who know him (friends). Second,
since a user has carefully vetted his friends, those friends are
likely not to attempt to harm him by tagging his true identity
assertions as false.

FaceTrust categorizes identity attribute assertions into var-
ious types such as age, address, profession, expertise etc.
For instance, for the type age, an assertion has the format
[{<,=,>}, number], e.g., [> 18] means that the user
claims to be older than 18. We use distinct types because a
user’s tendency to correctly tag assertions may vary by type
(§III-B), and to address the camouflage attack (§III-C1).

For an assertion At
i of type t posted by a user i, i’s friend

j may tag it as dA
ji. dA

ji takes two values: true indicates that
j believes i’s assertion, and false that it does not. A posted
assertion and its associated tags are valid for a period of time
set by the OSN provider depending on the assertion type. An
assertion is uniquely identified by its {type, assertion}
pair. A user cannot repost the same assertion and reset
unfavorable tags before the assertion expires. Since the tags
represent sensitive information, they are only known to the
OSN provider and their tagger.

Users post assertions on their OSN profile and tag their
friends’ assertions using our “Am I Really?” (AIR) Face-
book application: http://apps.facebook.com/am-i-really. AIR
employs a “game with a purpose” design to incentivize social
tagging.

Tags and
Assertions

Trust
Inference

Tagger
Trustworthiness

Assertion
Veracity

Social
Graph

Tags on
Assertion

Fig. 2: Combining social tagging with trust inference to derive the
veracity of user assertions.

B. Assertion Veracity
A main challenge in FaceTrust’s design is to assess the veracity
of user assertions. This task is difficult because dishonest users
may post false assertions and strategize to make them appear
true, and benign users may make mistakes. To make this task
tractable, we resort to providing a relaxed credential that binds
an assertion to a veracity score between 0 and 1.

Definition 3.1: The assertion veracity of an assertion At
i is

a score 0 ≤ aA ≤ 1 reflecting the truthfulness of an identity
assertion A. It strongly and positively correlates with the truth,
i.e., an assertion with higher veracity than another is more
likely to be true.

As shown in Figure 2, the inputs for computing an asser-
tion’s veracity are the tags on the assertion and their taggers’
trustworthiness. A tagger j’s trustworthiness wt

j is a measure
that estimates the trustworthiness of j’s tags on assertions of
type t. We compute this measure using the trust inference
technique described in §III-C2. We then weigh an assertion’s
tags with their taggers’ trustworthiness to score the assertion’s
veracity. Let Fi denote the set of friends of user i that have
tagged the assertion At

i . To compute the veracity score aA of
At

i , the OSN provider aggregates the tags dA
ji by i’s friends as

follows:
aA = max(∑

j∈Fi

wt
j ·dA

ji/ ∑
j∈Fi

wt
j, 0) (1)

We make the scoring of the veracity of an assertion con-
servative by assigning -1 to false tags, 1 to true tags, and
normalizing negative veracity scores to zero. For instance, if
an assertion has two tags true and false from two equally
trustworthy taggers, its assertion veracity will be 0, not 0.5.
Equation 1 ensure that the sum of the weights wt

j of true
tags should be more thean 0.75 of the sum of the weights
of all users in Fi for aA to be more than 0.5 veracity. Thus,
this design is biased towards making it difficult for users to
make flase assertions appear true. However, malicious users
may abuse this design to make true assertions of a user non-
credible. We are tackling this attack by allowing only a user’s
friends to tag his assertions.

We use the additional condition that if the sum of the
trustworthiness of the taggers of the assertion At

i is below a
specified threshold M, aA is 0. M can be proportional to the
mean tagger trustworthiness of users. We use this condition to
discount assertions that have been tagged only by a few users
with low tagger trustworthiness.

aA = 0 if ∑ j∈Fi wt
j < M (2)

C. Tagger Trustworthiness
Definition 3.2: The tagger trustworthiness of a user j is the

integer score 0 ≤ wt
j ≤ Tmax that indicates whether a tagger

j is honest or correct in his assessments of the veracity of
assertions of a specific type. This score strongly and positively

correlates with the ground truth, i.e., a tag by a user with higher
trustworthiness is more likely to correspond to the reality.

How can FaceTrust reliably determine a tagger’s trustwor-
thiness wt

j? To address this problem we resort to a Sybil-
resistant trust inference technique. A trust inference algorithm
refers to the process of computing the trustworthiness of a
node in a graph by exploiting the transitivity of trust. The
algorithm assumes that a few select nodes in the graph are
fully trustworthy (trust seeds). It then analyzes the trust graph
to determine how trust propagates to other nodes.

We face two challenges in determining the tagger trustwor-
thiness wt . First, trust inference uses a trust graph, where an
edge between two users i and j is explicitly labeled with the
degree of trust that i places on j. However, this explicit trust
information is not available in a social network graph. Second,
how should we compute the tagger trustworthiness wt , given
that different trust inference algorithms exist and each has its
own strengths? We describe how we address each challenge
in turn in §III-C1 and §III-C2.

1) Tagging Similarity: We address the first challenge by
using tagging similarity between two friends to approximate
explicit trust. Recall that our assumption is that honest users
tend to tag correctly and similarly, and note that tagging
similarity is transitive. The tagging similarity tst

i j between two
friends i and j for an assertion type t is computed from two
sources: a history-defined similarity hst

i j and a user-defined
similarity ust

i j.
We compute the history-defined similarity between two

friends using a formula that resembles the Jaccard index [17].
Let Nt be the total number of assertions of type t that friends i
and j both have tagged. Let Ct be the number of tags on the set
of common assertions for which i and j are in agreement. The
history similarity hst

i j between i and j for type t is computed
as hst

i j =Ct/Nt . If Nt = 0, the similarity is equal to 0.
We use special assertions for each type - “Do I honestly tag

the <type> assertions of my friends?” - to derive user-defined
similarity ust

i j by a user i on his friend j for type t. Each user
j posts these assertions on his OSN profile. If j’s friend i tags
it as true, ust

i j equals 1; otherwise, it is 0.
We combine user-defined similarity with history-defined

similarity to obtain the final tagging similarity between two
friends in the OSN social graph: tst

i j ← a · hst
i j +(1− a)ust

i j,
where 0≤ a≤ 1. We vary the parameter a depending on how
many common assertions Nt of the same type t that users i
and j have tagged: the larger Nt is, the higher a should be.
When Nt is large, we presume that hst

i j(Ct/Nt) approximates
the likelihood that two friends would tag an assertion with
the same value in the future more accurately than a manually
specified value ust

i j. However, when Nt is small, we use the
user-defined value ust

i j to approximate this likelihood. The
parameter a is computed using the logistic (S-shaped) function
: a = (1+eb−Nt)−1. b is a small constant, and we set b = 5 in
this paper.

We then transform the social graph into a trust graph by
assigning the tagging similarity tst

i j to be the weight of a trust
graph edge from a friend i to a friend j. We refer to this
augmented graph as the similarity-based trust graph G(V,Et).
Note that this is a directed graph, as the user-defined similarity
usi j is directional.

We have a distinct similarity-based trust graph for each type
of assertion to mitigate camouflage attacks (§II-C). Due to this
design an attacker is forced to tag honestly many assertions of
the same type in order to boost its tagger trustworthiness. As

a result, he is less flexible in his choice of which assertions
to tag and how.

2) Max-flow-based Trust Inference: Once we have con-
verted a social graph into a trust graph, the challenge lies
in computing a tagger’s trustworthiness. To this end, we
consider the group max-flow-based class of trust inference
algorithms [21], [30], which have been shown to be sum-
Sybilproof [21], i.e., an attacker cannot substantially increase
the sum of the trust values of users under his control by
introducing many Sybils.

The common element among trust inference methods is
that trust flows from a few select trust seed users (trusted
seeds) and propagates to the other users in the trust graph.
A seed is a highly trusted user, e.g., a trusted employee of
the OSN provider that also verifies and tags assertions of
many of his acquaintances. The specifics of the trust inference
method determine how trust propagates in the graph. Our trust
inference scheme should assign high trust to users that are
well-connected with the trusted seeds and vote similarly to
them. It should also assign lower trust to dishonest users that
happen to be well-connected but vote dissimilarly to the trusted
seeds. Finally, it should assign low trust to Sybil users that are
often connected only to their dishonest creator users.

What renders a trust inference method Sybil-resilient is the
bottleneck property [21], which we define as follows: “the trust
that flows to the region of the graph that consists of dishonest
users and their Sybils is limited by the edges connecting the
dishonest region with the region that consists of trusted seeds
and honest users.”

In addition, the selection of the trusted seeds and the number
of trusted seeds is paramount to the attack resilience of the
system. This is because an attacker that manages to be friend
trusted seeds and to build up high tagging similarity with
them can greatly manipulate trust assignment. When the trust
inference method employs numerous trusted seeds a dishonest
user would need to identify and target many of them in order
to be effective. Note that the complete trust graph itself is not
made public, therefore locating a trusted seed can be a difficult
task for attackers.

Hence, one desirable feature of trust inference methods is
to be efficiently computable for numerous trusted seeds. To
this end, the method’s computation cost should be mostly
independent of the number of trusted seeds. One of our
contributions is a max-flow-based trust inference method,
called MaxTrust, for computing the tagger trustworthiness wt

j
with this desirable feature.

We also note that determining which users in a social graph
can be designated as trusted seeds is an important challenge.
Gyongyi et al. [16] addressed this challenge in the context
of TrustRank, an eigenvector-based trust inference method for
web pages. Their solution also applies in our setting. More
recently, Wu et al. proposed improvements over the seed
selection algorithm [32] introducing topical TrustRank.

Our method is inspired by the Advogato [21] trust metric.
Both Advogato and MaxTrust satisfy the bottleneck property.
In particular, assuming that Sybils are only connected to their
dishonest user creator, they ensure that the sum of the tagger
trustworthiness of the creator and its Sybils does not exceed
the sum of the capacity of the creator’s incoming edges in the
similarity-based flow graph.

Compared to Advogato, MaxTrust’s advantage is that al-
though it employs multiple trusted seeds from a set S ⊂ V ,
it does not need to be run for each seed. Instead in a single
run (max-flow computation), it considers all the trusted seeds.

1.0
1.0

1.0

1.0

0.5
0.5

0.5

Tmax

4Tmax 4Tmax

Tmax

Tmax

Tmax

Tmax
Tmax

Tmax
Tmax

Tmax
Tmax

Tmax

Tmax

Tmax

Tmax

Tmax

Fig. 3: The tagging similarity-based trust graph and its conversion
into a MaxTrust network flow graph. The capacity Csupersource in this
example is 8 ·Tmax. MaxTrust results in all users except U7 having tagger
trustworthiness equal to Tmax.

This results in MaxTrust being Θ(|S|) times more efficient
than Advogato.

MaxTrust computes the tagger trustworthiness 0≤wt
i ≤ Tmax

using a max-flow computation the cost of which increases
linearly with Tmax. In choosing Tmax one has to consider
the trade-off between computation cost and fine-granularity
in assigning trust values to users. MaxTrust proceeds in the
following two phases:
Phase 1: Network Flow Graph Creation. In this phase,
we transform the trust graph into an edge-capacitated network
flow graph. We create an additional virtual supersource user
(Figure 3). We then add an edge from the supersource to each
trusted user s ∈ S. We add a directed edge from each user,
except of the supersource, to an additional virtual supersink
user. To prevent loops during the distribution of capacity
among the users , we prune all edges that connect users at
a higher distance from the supersource to users at a lower
distance from the supersource. We also prune edges between
users at the same distance from the supersource.

We now describe how we distribute capacity to the edges
of the network flow graph. We denote as Csupersource the sum
of the capacity of the outgoing edges of the supersource. We
set Csupersource = (1− pd)|V | ·Tmax, where pd is the portion of
users in the trust graph G(V,Et) that are dishonest. We make
the implicit assumption that we know the approximate number
of honest users at the time we initialize the trust inference
method. Next, we assign capacity Cs =Csupersource/|S| to each
edge from the supersource to each trusted user s. In the rest
of this description, we denote as Cu the sum of the capacity
of the incoming edges of user u.

Subsequently, we recursively assign capacities to the rest
of the edges in the trust graph. That is, for each user u, we
distribute Cu−Tmax capacity among the outgoing edges that
connect u with its neighbors in the pruned graph. The capacity
Cuv of the outgoing edge from user u to its neighbor v in the
pruned graph is assigned proportionally to the tagging simi-
larity tsuv between user u and v: Cuv = (Cu−Tmax)

tsuv

∑z∈Fu tsuz
,

where Fu is the set of u’s friends. We also assign capacity Tmax
to the edge u→ supersink. If Cu < Tmax, we set Cu = Tmax, and
allocate no more capacity to u’s neighbors. With this choice,
we bias tagger trustworthiness towards higher scores for a
smaller number of users, instead of lower scores for a larger
number of users. This further limits the effectiveness of Sybil
assertion poster attacks II-C.
Phase 2: Max-flow Computation. We now describe how
we compute the maximum flow from the supersource to the
supersink and derive the users’ tagger trustworthiness. In our
setting, edge capacity and flows take integer values. Thus,
solving optimal max-flow with Edmonds-Karp (as done for
Advogato) costs O(Tmax(1− pd)|V ||E|), since it takes at most
Csupersource = Tmax(1− pd)|V | augmentations. This is compu-
tationally prohibitive [28], therefore we introduce a heuristic.

The heuristic executes Tmax Breadth First Search Operations
(BFSO). The BFSO starts from the supersource. It visits every
user i in the flow graph once in a BFS fashion. When the
heuristic visits a user i, it scans i’s children in a random order.
For each child, it stores the last parent user that the BFSO
visited before scanning the child. We denote the last visited
parent of a scanned user j as parent(j).

When the BFSO scans i’s child j, it backtracks from j to the
supersource through i as follows. First, it checks whether the
edge i→ j has at least capacity 1. If yes, it checks whether the
capacity of the edge parent(i)→ i is at least 1. If yes, it sets
i = parent(i) and repeats until parent(i) is the supersource. If
backtracking reaches the supersource, it adds 1 unit of flow
to the edge j→ supersink. It also reduces the capacity of the
edges along the backtracking path by 1. If the edges on the
backtracking path upstream of i do not have at least capacity
1, the algorithm does not scan any more of i’s children. This
step costs O(∆), where ∆ is the graph diameter.

If the algorithm adds 1 unit of flow to the edge j →
supersink, j is considered for a subsequent visit, but is not
considered for a subsequent scan by the same BFSO. If the
algorithm does not add 1 unit of flow, j can be scanned from
another parent. The BFSO continues until there are no more
users to be visited.

After the BFSO ends, a new one starts from the supersource.
The capacities and flows of the edges remain as adjusted
during the previous BFSO. After Tmax BFSO, the flow on the
edge j→ supersink corresponds to j’s tagger trustworthiness.

The algorithm performs a total of Θ(Tmax|E|) user scans. At
each scan it performs O(∆) capacity updates for each of the
user’s ancestors. Thus, our heuristic costs O(Tmax|E|∆). The
diameter ∆ of social graphs (small world networks) is typically
O(log(|V |) (measured to be 9 to 27 in real OSNs [23]).

Our heuristic takes advantage of the fact that all users
are connected to the supersink. Thus, it finds in O(1) an
approximation of the shortest residual path to the supersink.
It maintains the guarantees required by the trust inference
method and offered by the optimal max-flow solution using
Edmonds-Karp’s algorithm: a) if there is flow on a link
j→ supersink, there will be flow on this link in the optimal
solution; and b) if there is flow on j’s outgoing links there
will be flow on the link j→ supersink. The heuristic misses
the cases in which it would be preferable to not use ancestor
capacity to accept a child j but to use it for another child
m, because child j may have another parent that can pass
flow to it, while child m does not. However, in our 200K-user
network flow graph this was not often the case, as indicated
by the fact that the max-flow achieved with our heuristic was
typically ∼ 96% of the optimal max flow.

For an analysis of the assurances provided by the max-
flow-based tagger trustworthiness mechanism, see Section 4.2
of [28].

D. Mitigating Sybil Assertion Posters
We now describe how we improve the above scheme to defend
against the Sybil assertion poster attack (§II-C). Since honest
users are not connected to the Sybil accounts and cannot tag
their assertions, dishonest users do not need to tag differ-
ently from their honest friends. This results in high tagging
similarity between honest and dishonest users. Subsequently,
dishonest users do not have lower tagger trustworthiness than
honest users and their tags on the false assertions are not
discounted.

We simultaneously employ two techniques to mitigate this
attack. The first technique addresses the case in which a group
of colluding users creates a single or a small number of Sybil
accounts. We observe that colluders can create assertions on
the few Sybil accounts, tag them as true and use them unim-
peded to present multiple falsified credentials. We mitigate this
attack by imposing a quota on the number of credentials each
account can issue. A reasonable approach in enforcing quotas
is to impose an upper limit on the number of credentials a
user can issue per month for each type of assertion, based on
expected usage.

The second technique addresses the case in which the group
of colluding users creates multiple Sybil accounts to overcome
the credential quotas. Our solution relies on the assumption
that honest users are typically both honest taggers and honest
assertion posters. We can therefore use our Sybil-resilient
tagger trustworthiness measure to infer how trustworthy their
assertions are. To this end, we multiply the computed assertion
veracity aA of an assertion A posted by user j by a normalized
value of the tagger trustworthiness of j.

a′A = aA ·min(1,c+(1− c)wt
j/w) (3)

w is the tagger trustworthiness value for which (1− pd)|V |
users have great or equal tagger trustworthiness. pd is the
portion of users V in the trust graph G(V,Et) that are dishonest.
c is a tunable parameter, that assigns a minimum veracity aA ·c
to assertion A in case the tagger trustworthiness wt

j of j is 0.
Since our trust inference method assigns very low tagger

trustworthiness scores to multiple Sybils and less tagger trust-
worthiness to dishonest than to honest users, this adjustment
results in decreased veracity for assertions posted by colluders
in this attack.

E. OSN-Issued Credentials
After the OSN provider (§II-B) obtains the assertion veracity
score for a user i’s assertion At

i , it can issue a web-based
relaxed credential for this assertion, when the need arises. As
shown in Figure 1, a credential issued by an OSN will include
the assertion type t, the assertion At

i , and the assertion veracity
score.

We use non-cryptographic credentials that satisfy the goals
listed in §II-D. Each credential as seen by the verifiers
comprises:
• The list of assertions the user is certifying with

their veracity scores and their types.
• Content: An excerpt of the message (review, email,

random string etc). for which the credential is used.
• Context: A URL to or a description of the message for

which the credential is used.

For example, a credential used for an online book review may
include the following fields:
• [profession, CS professor, 1.0, 17 tags]
• This is a great textbook and I highly recommend it ...
• http://www.amazon.com/review/...
This design binds a credential to the content and context it is

used for, and ensures a credential’s authenticity, as it cannot be
used to verify the assertion in a different content and context.

It is important to note that the credential does not reveal
any personally identifiable information, unless the user has
explicitly included such information in the assertion or the
message.

IV. Evaluation
We evaluate the following aspects of FaceTrust:
Effectiveness: How strongly do assertion veracity and tagger
trustworthiness correlate with the truth, and how well does
the design withstand incorrect user tagging, and colluder and
Sybil attacks?
Practicality and usage: How often and how accurately does
a user tag his friends to help them obtain credentials?
Computational feasibility: A social network may consist of
several hundreds of millions of users. Will an OSN provider
have sufficient computational resources to mine the social
graph and derive tagger trustworthiness scores?

We use simulations on a sample Facebook social graph and
a real-world deployment to answer these questions. We discuss
the first two aspects in turn, and refer the reader to Section
6.3 of [28], where we illustrate our scheme’s computational
feasibility.

A. Effectiveness
We first examine whether true assertions obtain high veracity
and false assertions obtain low veracity, even in the presence of
dishonest users and Sybil attacks. We also study the limits of
our approach, i.e., under which conditions and attack strategies
false assertions can obtain high veracity.

For a more realistic evaluation, we use a crawled sample
of the Facebook social graph [14], which consists of a 200K-
user connected component obtained from a 1M-user sample
via the “forest fire” sampling method [19]. The average and
maximum number of friends of each user in the graph is ∼ 24
and 313, respectively. The diameter of this graph is 18 and
the clustering coefficient is 0.159.

1) General Simulation Settings: Each user in the social
graph posts a single assertion of the same type on his profile.
Honest users always post true assertions and dishonest users
always post false assertions. Furthermore, the honest users tag
as true the assertions posted by their honest friends and as
false the assertions posted by their dishonest friends.

The dishonest users tag all assertions as true, regardless
of whether they are true or not. By doing so, dishonest users
collude to increase the veracity of each other’s assertions.
When dishonest users behave in exactly the opposite way
honest users do, they become disconnected from the honest
nodes in the tagging-similarity-based flow graph. By truthfully
tagging the assertions of honest users, dishonest users attempt
to have common tags with other honest users in order to
increase their tagging similarity with trustworthy users. This
is a manifestation of the tagger camouflage attack (§II-C).

Both honest and dishonest users are randomly distributed in
the social graph. The case of dishonest colluders that forms a
group in the social graph is discussed in §IV-A3. In addition,

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90T
a
g

g
e
r

tr
u
s
tw

o
rt

h
in

e
s
s

% of honest nodes

Honest

Dishonest

(a)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50T
a
g
g
e
r

tr
u
s
tw

o
rt

h
in

e
s
s

Maximum # friends tagged

Honest

(b)

Fig. 4: Mean tagger trustworthiness: (a) as a function of the fraction of
honest nodes when the maximum number F of friends a user tags is 20;
(b) as a function of F when 80% of users are honest; Dishonest users do
not employ Sybils.

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000T
a
g
g
e
r

tr
u
s
tw

o
rt

h
in

e
s
s

Sybils

Honest

Dishonest

Sybils

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Tagger trustworthiness

Sybil, mean=0.57

Dishonest, mean=13

Honest, mean=41

(b)

Fig. 5: (a) Mean tagger trustworthiness as a function of the number of
Sybils each dishonest user creates; (b) CDF of the tagger trustworthiness
of honest, dishonest and Sybil users; Dishonest users employs 200 Sybils
each, F = 20 and 50% of users are honest.

each user tags the assertions of at most F of his friends.
We vary F to reflect various degrees of adoptability of social
tagging.

We obtain the tagger trustworthiness as described in §III-C2.
We do not consider the user-defined similarity (§III-C1), as we
use no notion of a priori trust between users. We set Tmax = 100
(§III-C2).

For each experiment, the minimum sum of the trustwor-
thiness of taggers M (§III-B) is equal to the average tagger
trustworthiness of honest users. We set c = 0.2 (§III-D).
We employ 1000 trusted seeds, which are randomly selected
among the honest users. We repeat each experiment 5 times
and plot the mean .

2) Tagger Trustworthiness Effectiveness: As described
in §III-B, the tags on assertions are weighted by their tag-
ger’s trustworthiness. Therefore, we first need to examine the
effectiveness of tagger trustworthiness (§III-C) under various
strategies employed by dishonest users. We consider the tagger
trustworthiness scheme effective if: a) it assigns substantially
lower trustworthiness to Sybil users than to honest users; and
b) it does not assign higher trustworthiness to dishonest users
than to honest ones.
Dishonest users do not employ Sybils: In this series
of experiments, dishonest users do not employ Sybils. In
Figure 4(a), we observe that the trustworthiness of honest users
is substantially higher than the one of dishonest users when
the portion of honest users is small. This holds despite the fact
that honest and dishonest users have the same connectivity in
the social graph.

The reason is that honest and dishonest users differ in terms
of tagging. When the portion of honest users is relatively low
and honest and dishonest users are placed randomly, there
are many opportunities for honest and dishonest users to tag
dissimilarly. Since tagging similarity captures the difference

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 10 20 30 40 50 60 70 80 90

A
s
s
e

rt
io

n
 v

e
ra

c
it
y

% of honest nodes

True

False

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
s
s
e

rt
io

n
 v

e
ra

c
it
y

Sybils

True

False

(b)

Fig. 6: Mean veracity of true and false assertions when F = 20: (a) as
a function of the fraction of honest nodes when dishonest users do not
employ Sybils; (b) as a function of the number of Sybils per dishonest
user when 50% of users are honest.

in tagging behavior between dishonest and honest users, this
translates to low pairwise trust between them. In addition,
since trust is seeded at honest users, MaxTrust’s transitive trust
mechanism assigns lower tagger trustworthiness to dishonest
users. This result demonstrates the importance of tagging sim-
ilarity, which results in dishonest users having less influence
on the system’s operation.

Figure 4(b) shows the trustworthiness of honest taggers
as a function of the maximum number of friends F each
user tags. This figure illustrates the importance of F . As F
increases, the number of common tags Ct (§III-C1) used to
derive the tagging similarity increases. For F < 10, the tagging
similarities between users are almost 0 and the similarity-based
trust graph is disconnected, resulting in honest users getting
very low trustworthiness. As F increases, the trust graph
becomes more connected and honest users obtain increased
tagger trustworthiness.
Dishonest users employ Sybil Taggers: To evaluate the
scheme’s resilience to Sybil attacks, all the dishonest users
create a varying number of Sybils. All the Sybils are connected
to their creator and are fully connected to each other. Sybils
tag the false assertions of their creator as true to increase the
veracity of those assertions. The creator always has tagging
similarity 1.0 with all its Sybils. This corresponds to the
configuration that maximizes the tagger trustworthiness of
Sybils.

As can be seen in Figure 5(a), when the number of Sybils is
200, the tagger trustworthiness of Sybils is on average 72 and
22 times lower than the trustworthiness of honest and dishonest
users, respectively. This is due to the bottleneck property of our
trust inference mechanism (§III-C2), which limits the amount
of trust that can be assigned to the Sybils of a dishonest user.

We now examine how tagger trustworthiness is distributed
among the users. Figure 5(b) depicts the CDF of the tagger
trustworthiness of honest, dishonest and Sybil users. As can be
seen, there is substantial variance in the trustworthiness scores
of honest and dishonest taggers. Nevertheless, on average
dishonest users have substantially lower trustworthiness due to
their decreased tagging similarity with honest users. Further-
more, almost 80% of Sybil users has 0 tagger trustworthiness.

In [28] we further evaluate our system under the assertion
poster camouflage attack (§II-C).

3) Assertion Veracity Effectiveness: The assertion veracity
scoring is dependent on the mechanism for determining the
weight of the taggers, which we evaluated in the previous
section. We now evaluate the assertion veracity computation
technique itself (§III-B) under varying attack scenarios.
Dishonest users do not employ Sybils: Figure 6(a) plots the
mean veracity of honest and false assertions as a function of

the portion of the users that are honest, when dishonest nodes
do not employ Sybils. We observe that when the fraction of
honest users exceeds 50%, the mean veracity of true assertions
substantially exceeds that of false ones. Unlike plain majority
voting, our mechanism assigns low veracity to false assertions
even when the fraction of dishonest users is large. This is
because MaxTrust assigns lower tagger trustworthiness to
dishonest users and their tags are discounted.
Dishonest users employ Sybil taggers: Figure 6(b) shows
the veracity of true and false assertions when dishonest users
employ Sybils. Each dishonest user creates a varying number
of Sybils. The Sybils are connected only to their creator and
tag all its assertions as true. As can be seen, the dishonest
users gain little benefit by using Sybils in our setting. Although
there are many Sybil taggers for false assertions, most of them
have very low (or 0) tagger trustworthiness and the sum of
tagger trustworthiness of Sybil taggers is most often below
the threshold M (Equation 2).

Figure 7(a) shows how veracity is distributed among true
and false assertions. We depict the CDF of the assertion
veracity of all 200K assertions. We observe that 60.6% and
14.3% of true assertions obtain veracity equal to 1 and 0.2,
respectively. 24.3% of true assertions obtain 0 veracity. The
true assertions with c = 0.2 veracity belong to honest users
with 0 tagger trustworthiness (Equation 3). The true assertions
with 0 veracity are the ones for which the sum of their taggers’
veracity scores are below M. The number of these incorrectly
assessed true assertions can be reduced by increasing the
maximum number of friends that users tag (F), i.e., increasing
the adoption of social tagging. Incorrectly assessed assertions
can be further avoided by designating more trusted seeds.

Unlike true assertions, most of the false assertions, 90%,
obtain 0 veracity. Only 1.5% of false assertions obtain veracity
1. This result suggests that FaceTrust’s assertion veracity
scoring mechanism is effective, but not absolutely accurate.
Thus, it should not be used to control access to critical
resources.
Dishonest focused colluders: We also evaluate the case in
which dishonest users form colluders groups. The dishonest
colluders in a group are connected to each other and tag each
other’s assertions, as true. This experiment differs in that it is
guaranteed that each dishonest user has a specified minimum
number of dishonest colluders. This corresponds to a more
focused and coordinated attack. Figure 7(b) depicts the mean
veracity of the assertions posted by the dishonest users as a
function of the size of the colluder groups.

We observe that the false assertions of colluders can get
higher average veracity than the true assertions only if the
colluder group size exceeds a relatively high threshold (30).
This is due to: a) the increased number of dishonest taggers;
and b) the increased tagger trustworthiness of the colluders.
The tagger trustworthiness of colluders increases because
users closer to seeds can get higher tagger trustworthiness in
MaxTrust. If a single colluder in a group is close to a trusted
seed, all the colluders in his group, which are connected to
him, may get high tagger trustworthiness. As the number of
colluders increases, both sources of increased trustworthiness
become more prominent and the assertions of colluders get
high veracity.

This result reveals a limit of our approach. If a substantial
number of colluders coordinates, they can ensure that their
assertions have high veracity. Nevertheless, rational colluders
need to expend effort, which may discourage them from

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Assertion veracity

False, mean=0.02

True, mean=0.64

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

A
s
s
e

rt
io

n
 v

e
ra

c
it
y

colluders

True

False

(b)

Fig. 7: (a) CDF of assertion veracity when dishonest users employ Sybils;
b) mean veracity of assertions posted by dishonest colluders as a function
of the colluder group size; 80% of users are honest and F = 20.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

A
s
s
e
rt

io
n
 v

e
ra

c
it
y

Sybil posters

True

False

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50

#
 u

s
e
rs

tags

Age

Profession

Location

Gender

(b)

Fig. 8: a) Mean veracity of false assertions posted by Sybil posters as
a function of the number of Sybil assertion posters in the group, when
80% of users are honest, F = 20, and the group size is 30; b) CCDF of
the number of ”Am I Really?” users as a function of the number of tags
per user for each assertion type.

orchestrating an attack.
Dishonest users employ Sybil assertion posters: We now
evaluate our system when a group of dishonest users performs
the Sybil assertion poster attack (§II-C). Each group of collud-
ers creates Sybils to which all the colluders connect to. The
Sybil users post assertions and all the colluders tag them as
true. At the same time dishonest users tag honestly for all
other assertions in an attempt to establish high similarity with
honest users.

In Figure 8(a), when the number of Sybil assertion posters
is small, e.g., 10, we observe that the assertion veracity is high.
Since the number of Sybils is small, MaxTrust does not assign
low tagger trustworthiness to them. Consequently, Equation 3
(§III-D) does not mitigate this attack, because both the col-
luding dishonest taggers and the Sybil posters have relatively
high tagger trustworthiness. This result reveals another limit of
our approach. Nevertheless, FaceTrust prevents dishonest users
from using the assertions of those Sybils in multiple contexts
by imposing a quota (§III-D) on the number of credentials
each user can request.

When the colluders create many Sybils to overcome the
quotas, they have to cope with the fact that the tagger trust-
worthiness of the Sybils is reduced. Consequently, the mean
assertion veracity is reduced as shown in Figure 8(a). This
result indicates the importance of multiplying the assertion
veracity by the poster’s tagger trustworthiness as described
in §III-D. Furthermore, rational dishonest users incur a cost
to create Sybils, e.g., solving CAPTCHAs during Facebook
account registration, which further limits this attack.

B. Facebook Deployment
FaceTrust requires a new form of user input: assertions and
tags. In addition, in order for the veracity scores to correlate
positively with the ground truth, it requires trustworthy users
to tag honestly and similarly. These facts motivate us to ask:

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30

#
 u

s
e
rs

assertions

Age

Profession

Location

Gender

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

age gender prof. loc.

A
s
s
e
rt

io
n
 v

e
ra

c
it
y

Type

True

False

False under attackers

(b)

Fig. 9: a) CCDF of the number of users as a function of the number of
posted assertions per user for each assertion type; b) veracity per type
of true and false assertions in FaceTrust’s real-world deployment with
and without attackers; The error bars denote 95% confidence intervals.

Are users willing to tag their friends’ tags? How often and
honestly will they tag? To answer these questions, we deployed
the “Am I Really?” (AIR) Facebook application (§III-A) for
users to post and tag assertions, and advertised it on Facebook.
The Facebook advertisements resulted in approximately 100
installations of AIR.

We collected a data set consisting of 1108 real Facebook
users. (Duke University IRB Protocol 3015.) 395 of those users
chose to declare that they are friends with at least one AIR
user, thus having one or more neighbors in the AIR social
graph. For the rest of this evaluation we provide statistics
concerning those 395 users, since they are the only ones that
can tag friends in AIR. Our data set includes 2410 social
connections established between Sept. 1st, 2009 and Jan. 10,
2010. These connections form several connected components,
the largest of which includes 182 users. The average number
of friends a user has in that largest component is 3.8 and the
diameter of the component is 4. Our live system computes
tagger trustworthiness scores using MaxTrust. We employ 10
trusted seeds, set Tmax = 10 and assume that 90% of the
network consists of honest users. We incorporate user-defined
similarity (§III-C1) in the computation of tagging similarity,
using b = 5. We again set c = 0.2 (§III-D).

Figure 8(b) shows the complementary cumulative distribu-
tion (CCDF) of users as a function of the number of tags they
post. We observe that even in this small social graph, more
than half of users have tagged at least 8, 6, 4, and 1 time
for type age, profession, location and gender, respectively.
We also find that users tag on average 14.4, 10.4, 7.5, and
4.6 times for assertions of type age, profession, location, and
gender, respectively. We believe that when the system is widely
adopted, users will have on average many more friends to tag.
Thus, we speculate that the number of assertions users tag
is likely to exceed 10, the number needed to obtain accurate
tagger trustworthiness (Figure 4(b) in §IV-A2).

Figure 9(a) shows the CCDF for the number of assertions
users post for each assertion type. More than one quarter of the
395 users have posted at least 8, 6, 4 and 2 assertions of type
age, profession, location and gender, respectively. We also find
that users post on average 5.6, 3.6, 2.6, and 0.9 assertions of
types age, profession, location, and gender. This is indicative
of the fact that users use this application as intended and do not
feel uncomfortable reporting such information to their friends
and FaceTrust.

We now examine the AIR profiles of 10 out of the 395 users,
for which we know the ground truth for their age, gender,
location and profession assertions. We collect a total of 50,
50, 50 and 20 age, profession, location and gender assertions,
respectively. These include 14 false age assertions, 21 false
profession assertions, 19 false profession assertions, and 10

false gender assertions. Each of these assertions were tagged
∼ 6 times on average by distinct users.

Figure 9(b) shows the mean veracity per type of the true
and false assertions with and without attackers in the system.
Per each type, the first column depicts the mean assertion
veracity of true assertions. The second column depicts the
mean veracity of false assertions in the absence of attackers.
The third column shows the mean veracity of false assertions
when we inject 20 dishonest users in AIR’s social graph.
The injected dishonest users do not represent real Facebook
accounts. They are connected to the 10 real honest users, such
that each of these real users is AIR-friends with two distinct
dishonest users. The dishonest users tag the false assertions
of the 10 real users as true. In an attempt to increase its
similarity with honest users, a dishonest user launches the
camouflage attack by tagging all the other assertions as true,
if their prior veracity of the assertion was greater than 0.5 and
false otherwise.

In Figure 9(b), we see that the computed veracity for true
and false assertions in the absence of attackers correlates very
well with the ground truth. This result indicates that users
tend to tag correctly. We observe that users may make some
mistakes in assessing each other’s age, but when the truth for
an assertion is straightforward, such as for gender, the veracity
of the assertion is high.

As can be seen in the third column for each type, the
injected dishonest users have boosted the veracity of false as-
sertions. This is mainly because the AIR social graph is small,
with each honest user having less than 4 honest friends on
average. However, there is still a distinguishable gap between
the average veracity of true and false assertions, indicating the
resilience of FaceTrust’s assertion veracity scoring mechanism.

V. Related Work
Overview: Prior work has employed trust in social networks
to improve system security [25], [29], [26], [20], [33], [30],
[12], [24]. FaceTrust’s main novelty lies in employing OSNs
to provide lightweight, flexible, and relaxed identity attribute
credentials. In addition, FaceTrust improves upon a max-flow-
based trust inference method [21] making it scalable with the
number of trusted seeds.
Social web of trust: The goal of FaceTrust is more re-
lated to the PGP Web of Trust (WoT) [35]. Like the PGP
WoT, FaceTrust aims to circumvent the expensive and often
monopolized Certificate Authorities to provide lightweight
credentials. Unlike the PGP WoT, FaceTrust uses the intuitive
OSN interface, and employs social tagging rather than key-
signing to derive trustworthiness. Furthermore, FaceTrust is
easily extensible, and is not limited to certifying only public
keys. Users can tag each other regarding multiple types of
identity assertions, and the set of assertions can be extended
by simply adding fields into a user’s profile.
Birthday-paradox-based trust inference: SybilLimit [34]
also exploits the fact that although attackers can create multiple
Sybils, they are limited in their ability to create and sus-
tain social acquaintances. SybilLimit performs special random
walks of O(log |V |) length (called random routes) starting from
trusted verifier nodes and a suspect node to determine whether
the suspect is a Sybil.

FaceTrust could employ SybilLimit instead of MaxTrust,
however its computation cost would be O(

√
|E|Tmax|V |

log |V |), which is approximately
√
|E| times more expensive

than MaxTrust’s under our sparse social graph setting.

Max-flow-based trust inference: Scalar max-flow-based trust
inference computes the maximum flow over a trust graph from
a trusted node (source) to a suspect node (sink) in order to
determine whether the suspect is trustworthy. Levien et al. [22]
and Reiter et al. [27] proposed scalar max-flow trust inference
schemes for public key certification schemes such as the PGP
WoT. They have also proved the resilience of maximum-flow-
based trust metrics to node and edge attacks.In addition, Cheng
et al. [10] have shown that a node cannot increase its trust
by creating Sybils . We do not employ scalar trust inference
because it is not sum-Sybilproof (§III-C2).

Advogato [21] and Sumup [30] use group max-flow-based
trust inference toward a Sybil-resilient trust metric and a
voter collection system, respectively. Group max-flow trust
inference bounds the sum of the trust values of Sybils by
the edge capacity of their creators. Sumup computes multiple-
source maximum flow from the users to a single trusted vote
collector with a DFS-based heuristic to decide which users can
vote at least once. Although, Sumup’s DFS-based max-flow
heuristic has comparable computation cost with MaxTrust’s,
it is designed to collect votes from a small fraction of users
(≤ 20%) in a social network. Thus, in our setting it can accept
only a small fraction of honest users as trustworthy.

Bazzar [24] also uses a max-flow-based technique to access
the likely trustworthiness of users in online marketplaces. It
uses the network formed from prior successful transactions
as an input of the max-flow-based technique, thereby limiting
trustworthiness manifulation. To reduce the computation cost,
Bazzar uses a layered graph concept called multi-graph, which
contains a series of networks, where each subsequent network
is a subgraph of the previous containing only those links with
higher flows.
Eigenvector-based trust inference: In EigenTrust [18] and
TrustRank [16] the node trust values are the left principal
eigenvector e of the matrix c, where ci j is the normalized
pairwise trust between nodes i and j. Both schemes seed the
computation of the eigenvector at a few selected trusted nodes.
This computation expresses how trust flows among users
through directed weighted edges. Although, for sparse and
small-world social graphs the computation cost of eigenvector-
based trust inference is comparable to MaxTrust’s, we do not
employ it because Cheng et al. [11] have shown that it is
substantially manipulable under Sybil strategies.
Bayesian Sybil inference: Similar to MaxTrust, SybilIn-
fer [12] takes advantage of the fact that clusters of Sybils
are connected to the honest regions of social networks with a
disproportionally small number of edges. Its Bayesian Sybil
detection method derives the probability of a suspect node
being a Sybil, which is an explicitly actionable measure of
trustworthiness. However, its computation cost is excessive for
our setting (O(|V |2 log |V |).
VI. Conclusion
We presented FaceTrust, a system that leverages OSNs to pro-
vide lightweight, flexible, relaxed and anonymous credentials.
These credentials help users and services to assess the veracity
of assertions made by online users. With FaceTrust, OSN users
post identity assertions such as “Am I really 18 years old?”
on their OSN profiles, and their friends explicitly tag these
assertions as true or false. An OSN provider analyzes the
social graph and the user tags to assess how credible these
assertions are, and issues credentials annotated by veracity
scores. Our analysis, real-world deployment and simulation-
based evaluation, suggest that FaceTrust is effective in obtain-

ing credible and otherwise unavailable identity information for
online personas.

References

[1] Belkin’s Amazon Rep Paying For Fake Online Reviews. http://tinyurl.
com/yzgp9co.

[2] Unedited. Unfiltered. News. iReport.com. www.ireport.com.
[3] Verisign: Personal Digital Certificate Enrollment. https://personalid.

verisign.com.au.
[4] Worth DOUBLE the money. http://tinyurl.com/y8pqgvl.
[5] Your Real Name TMAttribution. http://www.amazon.com/gp/help/

customer/display.html?nodeId=14279641.
[6] Amazon glitch outs authors reviewing own books. www.ctv.ca/servlet/

ArticleNews/story/CTVNews/1076990577460 35, 2004.
[7] So, Why Does the Air Force Want Hundreds of Fake Online Identities

on Social Media? http://bit.ly/g8vDhZ, 2011.
[8] R. Baden, N. Spring, and B. Bhattacharjee. Identifying Close Friends

on the Internet. In HotNets, 2009.
[9] J. Camenisch and E. V. Herreweghen. Design and Implementation of

the idemix Anonymous Credential System. In ACM CCS, 2002.
[10] A. Cheng and E. Friedman. Sybilproof Reputation Mechanisms. In

P2PEcon, 2005.
[11] A. Cheng and E. Friedman. Manipulability of PageRank under Sybil

Strategies. In NetEcon, 2006.
[12] G. Danezis and P. Mittal. SybilInfer: Detecting Sybil Nodes using Social

Networks. In NDSS, 2009.
[13] J. R. Douceur. The Sybil Attack. In IPTPS, March 2002.
[14] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. A Walk in

Facebook: Uniform Sampling of Users in Online Social Networks. In
INFOCOM, 2010.

[15] R. K. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of
Trust and Distrust. In WWW, 2004.

[16] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating Web Spam
with TrustRank. In VLDB, 2004.

[17] P. Jaccard. Etude Comparative de la Distribution Florale dans une
Portion des Alpes et des Jura. In Bulletin del la Societe Vaudoise des
Sciences Naturelles 37, 547-579, 1901.

[18] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The EigenTrust
Algorithm for Reputation Management in P2P Networks. In WWW,
2003.

[19] J. Leskovec and C. Faloutsos. Sampling from Large Graphs. In
SIGKDD, 2006.

[20] C. Lesniewski-Laas and M. F. Kaashoek. Whanau: A Sybil-proof
Distributed Hash Table. In NSDI, 2010.

[21] R. Levien. Attack-resistant Trust Metrics. www.levien.com/thesis/
compact.pdf, 2003.

[22] R. Levien and A. Aiken. Attack-resistant Trust Metrics for Public Key
Certification. In Usenix Security, 1997.

[23] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and S. Bhattachar-
jee. Measurement and Analysis of Online Social Networks. In IMC,
2007.

[24] A. Post, V. Shah, and A. Mislove. Bazaar: Strengthening user reputations
in online marketplaces. In NSDI, 2011.

[25] J. M. Pujol and R. S. J. Delgado. Extracting Reputation in Multi Agent
Systems by Means of Social Network Topology. In AAMAS, 2002.

[26] A. Ramachandran and N. Feamster. Authenticated Out-of-Band Com-
munication Over Social Links. In WOSN, 2008.

[27] M. Reiter and S. Stubblebine. Authentication Metric Analysis and
Design. In ACM TISSEC, 1999.

[28] M. Sirivianos, K. Kim, J. W. Gan, and X. Yang. On the Internet, “Am
I Really not a Dog?” Assessing the Veracity of Online Identity As-
sertions via Social Networks. www.cs.duke.edu/∼msirivia/publications/
facetrust-tech-report-conext.pdf, 2010.

[29] Y. Sovran, A. Libonati, and J. Li. Pass it on: Social Networks Stymie
Censors. In IPTPS, 2008.

[30] D. N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-Resilient Online
Content Rating. In NSDI, 2009.

[31] A. Whitten and D. Tygar. Why Johnny can’t Encrypt: A Usability
Evaluation of PGP 5.0. In USENIX Security, 1999.

[32] B. Wu, G. V., and D. B. D. Topical TrustRank: Using Topicality to
Combat Web Spam. In WWW, 2006.

[33] S. Yardi, N. Feamster, and A. Bruckman. Photo-Based Authentication
Using Social Networks. In WOSN, 2008.

[34] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao. A Near-Optimal Social
Network Defense Against Sybil Attacks. In IEEE S&P, 2008.

[35] P. R. Zimmerman. The Official PGP Users Guide. In MIT Press, 1995.

